CONSTRUCTING LINE GRAPHS

A line graph is used to display information that is connected in some way (for example how something changes over time). Unlike a bar chart, you will have a linear scale on both the X and Y axis. The diagram below shows how you should construct a line graph.
You must always use graph paper.

Your y axis must be labelled and have units, copied directly from your results table. You put the factor that changes as a result of x axis changing here (this is your dependent variable).

Time (min)
Your y axis must be labelled and have units. It must be copied directly from your results table. This is the factor that you changed in your experiment (this is your independent variable)

Interpreting line graphs

You can use the line on a line graph to describe the relationship between the independent (x-axis) and dependent variable (y-axis). For example, at point A on the line - as time increased from 0-2 minutes, the temperature decreased from $160^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$. At point B on the line, temperature remained constant (did not change) at $120^{\circ} \mathrm{C}$ from 2 to 9 minutes and so on. The steepness of the line shows the rate of increase or decrease. A steeper line - is a faster increase or decrease compared to a less steep line!

Line graph success criteria - this is how your line graph will be marked.

Line Graphs
There are 4 things which you need to remember when drawing a line graph

Constructing a Line Graph

Give your graph a suitable title (1)		
Plot each point accurately and join up the plot points with a straight line (1)	Success criteria	Copy the headings and (units) from the table onto correct axis (1)
Add a number scale to both your \times and y-axis that goes up in equal intervals (1).		

You should have a copy of the success criteria stuck into your jotter so that you can use it whenever you need it.

Line graph questions ANSWERS

1. The following information shows the change in temperatures in London over a year.

Average daily maximum temperature in London during the year:

Month	J	F	M	A	M	J	J	A	S	O	N	D
Temp $\left({ }^{\circ} \mathrm{C}\right)$	4	5	7	9	12	16	18	17	15	11	8	5

Hints: \quad X axis $=$ Month \quad - axis $-\operatorname{Temp}\left({ }^{\circ} \mathrm{C}\right) \quad$ Go up in 2's
a. Put the following information into a line graph on graph paper then use the graph to
b. Which was the warmest month? JULY
c. Which was the coldest month? JANUARY
2. Paul set up an experiment measuring the number of oxygen bubbles given off by pond weed in one minute. He counted them with the water at various temperatures. His results are in the table below.

Temperature in ${ }^{\circ} \mathrm{C}$	10	20	30	40	50	60
Number of bubbles per minute	6	10	17	24	15	0

Hints: X axis $=$ Temperature in ${ }^{\circ} \mathrm{C} \quad$ Y axis $=$ Number of bubbles per minute
a. Draw a line graph of the results of this experiment on graph paper. Use your line graph to answer the following questions.
b. At which temperature were the most bubbles produced per minute? $40^{\circ} \mathrm{C}$
c. At which temperature were the least bubbles produced per minute? $60^{\circ} \mathrm{C}$
d. What is the difference between the bubbles produced per minute between 20 ${ }^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$? $14^{\circ} \mathrm{C}$
3. Small organisms were fed chicken manure. The volume of biogas produced was measured over a period of five hours.

Time in hours	Volume of Biogas in $\mathrm{cm}^{\mathbf{3}}$
0	0
1	3
2	6
3	12
4	24
5	48

Hint: X-axis = time in hours
Y -axis $=$ Volume of biogas in cm^{3}.
a. Put the following information in a line graph on graph paper.
b. What is the relationship between the time and volume of biogas produced? As the time increases, the volume of biogas produced increases

